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Introduction

Plants have evolved in a microbial world. Thus, plant-microbe

interactions may be inherent to plants’ adaptation to their
osenberg et al. (eds.), The Prokaryotes – Prokaryotic Communities and Ecophysiol

ringer-Verlag Berlin Heidelberg 2013
environment. On the other hand, plants are the major source

of organic nutrients in the soil, the driving force for microbial

activity. The soil microflora interacts with plant roots and can

even modulate the plant’s response to both biotic and abiotic

stresses. Here, we describe the rhizosphere as an organized unit,

composed of the root and its associated microbiome. This inter-

action occurs in the limited soil region directly influenced by the

living plant root. The presence and activities of the root affect the

surrounding soil chemically, physically, and biologically. Thus,

numerous processes occur in parallel in the rhizosphere, creating

a unique and active niche. The chemical processes involve passive

and active deposition of a multitude of compounds, mostly labile

organic matter from the plant root and sloughed-off plant cells

and tissues. The deposits discharged from the roots into the

surrounding soil include different amino acids and proteins,

organic acids, carbohydrates and sugars, vitamins, and the muci-

lage, accounting for a large proportion of the plant’s fixed carbon.

These, of course, are the driving force for alterations in the

activity, function, abundance, composition and structure of the

soil microbial community. The rhizosphere community will, in

turn, affect root health and development.

Is it possible to consider the plant-rhizobacteria complex as

a ‘‘holobiont’’ composed of the plant and its accompanying

microbiome, acting as a consortium, a unit of selection

in evolution (Rosenberg et al. 2007; Zilber-Rosenberg and

Rosenberg 2008; Rosenberg and Zilberg-Rosenberg 2011)?

Rosenberg and Zilberg-Rosenberg (2011) suggested four criteria

for the hologenome theory. These criteria can be examined with

regard to the rhizosphere: (1) the rhizosphere contains abundant

and diverse microorganisms acquiring a nutrient-rich environ-

ment from the plant, (2) the rhizobacteria affect the plant’s

fitness, and (3) variation in the hologenome can be brought

about by changes in either the plant genome or the microbial

population genomes. The fourth criterion of the hologenome

theory suggests the ability to transmit genetic variation from one

generation to the next. In the case of the rhizosphere, this is not

straightforward. However, the genetic variation in the soil

microbiota is enormous: 1 g of soil can contain millions of

bacterial cells belonging to more than 10,000 unique taxa (Fierer

et al. 2007). It may be suggested that roots grown in such a soil

will enrich the required functional, rather than phylogenetic

group, to support its development under the given conditions.

The high degree of coadaptation between plants and soil micro-

organisms is manifested by the high diversity of root-associated

and endophytic species (Manter et al. 2010; Uroz et al. 2010) and
ogy, DOI 10.1007/978-3-642-30123-0_38,
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the concomitant high frequency of plant-growth-promotion-

related traits in soil and rhizosphere bacteria (De Brito Alvarez

et al. 1995; Cattelan et al. 1999; Berg et al. 2002, 2006; Ahmad

et al. 2008; Garbeva et al. 2008; Zachow et al. 2008; Sato et al.

2009; Fürnkranz et al. 2009; Çakmakçi et al. 2010).

In this chapter, we describe the rhizosphere and its

microbiome, focusing on data and theories describing general

natural rhizospheric microbial ecology in health and disease. We

discuss the anthropogenic and global warming impacts on rhi-

zosphere microbiome, and the effects of mycorrhiza. We

describe the structure and function of the microbial community

at the rhizosphere, and the great impact recent developments in

molecular techniques has and will continue to have in the near

future in this field. We do not, however, discuss specific symbi-

otic/pathogenic interactions and mechanisms.
The Rhizosphere: Definitions, Compartments,
and Spatial and Temporal Scales

Plant roots are linear units that can be divided into compart-

ments that differ in their degree of development and differenti-

ation, as well as in their functional, physiological, and

biochemical characteristics. Plant root systems also exhibit

high physiological and biochemical plasticity (Waisel and Eshel

2002), which is manifested by changes in root properties and

activities (Neumann and Römheld 2002). Moreover, within

a single root system, different types of roots are formed, even

when grown under homogeneous aeroponic conditions (Waisel

and Eshel 2002). These root types may differ in their structure;

rates of water and nutrient uptake; growth and accumulation of

ions; responses to salinity, hypoxia, and nutrient deprivation;

and expression and activity of important enzymes. The life span

of roots ranges from days to over a year, depending on the plant

species and root type, as influenced by abiotic and biotic factors.

Roots elongate continuously. The different compartments

formed along the growing root axis include the root cap, root

tip, elongation zone, root-hair zone, and mature zone. Each

compartment represents a different level of differentiation and

performs distinctive functions. Roots also produce lateral roots,

whose sites of emergence constitute yet another root compart-

ment. Finally, wounds caused by friction with soil particles, as

well as by grazers and pathogens, andmycorrhiza also contribute

to the array of compartments within the root system.

A rhizosphere is created around each root as it grows and the

root’s activity changes the chemical, physical, and biological

properties of the soil in its immediate vicinity. Thus, the rhizo-

sphere is defined by its function rather than its ‘‘geometry’’ and

can vary greatly in its spatial and temporal dimensions, even

under transient or minute modulation of any one of its compo-

nents. The radial dimensions of the rhizosphere may span sev-

eral millimeters in diameter for soluble nutrients (such as

nitrate) or volatiles, but is much more restricted (<1 mm) for

sparingly soluble minerals (such as P and Fe) (Neumann and

Römheld 2002). Root compounds released into the soil may

directly facilitate the plant’s acquisition of mineral nutrients.
These include excreted and secreted compounds (carbon diox-

ide, bicarbonates, protons, electrons, etc.) that affect the soil pH

and redox potentials. Other secreted compounds, such as

phytosiderophores, target specific nutrients and directly increase

their availability to the plant. Rates of release of these com-

pounds are highly affected by nutrient limitations. Although

inorganic compounds can directly modify the biogeochemistry

of the surrounding soil (Hinsinger 2001; Cheng et al. 2004;

Vetterlein and Reinhold 2004; Hinsinger et al. 2009), the dra-

matic rhizosphere effect is mainly attributed to the release of

large amounts of organic compounds.

Many factors affect the quantity and composition of root-

released organic carbon: plant species (Hütsch et al. 2002; Jones

et al. 2009), environmental factors (light, temperature), nutri-

tional balance, stresses (including herbivores), and biological

interactions, including mycorrhiza and prokaryotes, which act

as strong sinks (Neumann and Römheld 2002; Jones et al. 2004).

Concentrations of organic root depositions are inversely related

to the distance from the root surface (Cheng et al. 1996;

Kuzyakov et al. 2003; Gao et al. 2011). The main components

of organic root depositions are thought to be root debris, which

includes cell lysates, sloughed-off root cap cells (border cells),

and senescent tissue (Uren 2001). Therefore, the composition of

root depositions includes the entire array of root products. Root

exudates, defined as compounds released from intact root cells

by either diffusion or secretion, account for a smaller fraction of

root depositions, but can have a direct and immediate function

in rhizospheric processes (Neumann and Römheld 2002). Many

types of low-molecular-weight organic compounds diffuse from

intact cells into the soil. The most abundant diffusates are the

principal cytoplasm compounds (e.g., sugars, organic acids, and

amino acids) that move out of the cells due to the dramatic

gradient in their concentration between the root and its envi-

ronment. These sharp gradients are maintained by the rapid

consumption of such compounds by soil microorganisms.
Carbon Flow in the Rhizosphere and
Microbial Responses

Root deposition of carbon (C) in the soil is ofmajor importance in

regulating ecosystem functioning. However, it is clear that C flow

in the rhizosphere is an extremely complex process, varying spa-

tially and temporally along the root and affected by myriad inter-

actions between the plant root and biotic and abiotic

environmental factors (Jones et al. 2004). Experiments conducted

using pulse-labeling with 14C and 13C isotopes have enabled

a description of the flow of plant-assimilated C into the soil

microbial biomass. Roughly, half of the biological activity in

soils is supported by recent (hours to a few days) photosynthe-

sis-assimilated C (Högberg and Read 2006). On average, 17% of

the total C assimilated by photosynthesis is released into the soil

(Nguyen 2003). However, the actual percentage may vary greatly

among plant species, and usually decreases with plant age

(Gransee and Wittenmayer 2000; Nguyen 2003). While most of

the released C is rapidly respired by the root and soil
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microorganisms, about a third resides in the soil incorporated in

the microbial biomass or in the soil organic matter (Kuzyakov

and Domanski 2000; Nguyen 2003; Jones et al. 2009). Assimila-

tion of newly photosynthesized organic compounds into soil

microbial biomass occurs rapidly—within hours for different

grass species (Rattray et al. 1995; Domanski et al. 2001; Kuzyakov

and Domanski 2002; Rangel-Castro et al. 2005a) and after 2 days

for Scots pine trees (Högberg et al. 2008). Rapid incorporation

of assimilates into bacterial RNA (Rangel-Castro et al. 2005b;

Vandenkoornhuyse et al. 2007) and membrane fatty acids

(Treonis et al. 2004) has also been confirmed. In grassland soil,

microbial RNA turnover was estimated to be 5 days with a mean

residence time of 15–20 days (Ostle et al. 2003). RNA stable

isotope probing, combined with community profiling methods,

revealed that the most active bacterial populations residing in the

rhizosphere utilize recently fixed C (Rangel-Castro et al. 2005b;

Vandenkoornhuyse et al. 2007). However, the degree of labeling

of different populations was uneven, indicating differences in rates

of assimilation and C turnover, as well as reliance on other sources

of organic C, including soil organic matter or remnant dead

roots (Rangel-Castro 2005b; Vandenkoornhuyse et al. 2007).

Several studies have demonstrated interrelations between

plant deposits and the microbial community. In rice rhizo-

sphere, following a labeling period of 7 days, the assimilation

of root-derived compounds by microorganisms was inversely

related to distance from the root (Lu et al. 2007). This is consis-

tent with rhizosphere dogma. Rhizosphere bacteria respond to

changes in root exudation rates and composition. For example,

Liljeroth et al. (1990) used 14C labeling of wheat to demonstrate

that at higher N, exudation, as well as bacterial numbers,

increase. A mutation in an ABC transporter of Arabidopsis

thaliana involved in the secretion of phytochemicals resulted

in a shift in composition of root exudates and a concomitant

shift in the rhizosphere-associated bacterial community (Bardi

et al. 2009). It was also confirmed that plant root exudation is

influenced by association with bacteria. For Lolium perenne

plants grown under sterile conditions, metabolites produced

by Pseudomonas aeruginosa significantly increased root exuda-

tion (Meharg and Killham 1995). In contrast, inoculation of

sterile-grown maize plants with P-solubilizing, growth-

promoting Pantoea agglomerans led to a significant decrease in

root exudation (Laheurte and Berthelin 1988).

It is important to note here that C flow in the rhizosphere is

bidirectional: roots take up organic compounds from the soil,

which can be later transferred to the shoot (Jones et al. 2009). Of

high importance is the uptake of sugars and amino acids, that

is mediated by membrane transporters. However, a growing

body of evidence indicates that uptake of large molecules,

including proteins and DNA which can sustain plant growth as

sole sources of N and P, respectively, probably occurs via endo-

cytosis (Paungfoo-Lonhienne et al. 2008, 2010a). Furthermore,

recent evidence has shown that intact Escherichia coli as well as

Saccharomyces cerevisiae cells are taken up and consumed by

roots of Arabidopsis thaliana and tomato plants, respectively,

and that the consumed microbial-derived N is incorporated in

the leaves (Paungfoo-Lonhienne et al. 2010b).
Spatial Distribution of Root-Associated
Microbial Communities

As we have seen, the spatial-temporal heterogeneity of the rhi-

zosphere is enormous. Although well-recognized, a relatively

small proportion of rhizosphere studies have addressed the

issue of spatial distribution of bacterial populations on roots

and in the rhizosphere. Naturally, such topological studies

require in situ visualization of root-adhering bacteria with min-

imal physical disruption of the samples. Accordingly, the main

technical arsenal includes different microscopy technologies

(light and fluorescence microscopy, confocal laser-scanning

microscopy, transmission and/or scanning electronmicroscopy)

coupled (or not) with suitable reporting systems (such as

fluorescence-labeled probes or antibodies, general stains, and

reporter genes). As a result, the studies are laborious and the

number of samples that can be thoroughly processed is limited.

Furthermore, most of the knowledge obtained is related to

studies examining the root- or seed-colonization pattern of

a specific inoculated bacterial species, many times under gnoto-

biotic conditions. Nevertheless, the basic and applied knowledge

culled has been very valuable.

Several studies have demonstrated colonization of roots by

either indigenous soil communities or inoculated strains. These

studies have outlined several basic aspects of root colonization

topology.

1. The major part of the root surface is bacteria-free. Early

scanning electron microscopy (SEM) observations of wheat,

ryegrass, and clover roots revealed that only a small fraction of

the root surface is occupied by bacteria (Campbell and Rovira

1973; Rovira and Campbell 1974). Using light microscopy

(LM) and cell staining, rhizoplane coverage by indigenous

bacteria was estimated to be between 5% and 10% for eight

different grasses and perennials grown in soil (Rovira et al.

1974). In the rhizoplane of pine (Pinus radiata) inoculated

with Pseudomonas sp. or Bacillus sp. isolates, microbial cov-

erage ranged between 10% and 20% of the surface area

(Bowen and Theodorou 1979). SEM and LM examination

of rice seedlings gave estimates of 1–9% coverage (Asanuma

et al. 1979). More recent studies have also shown low relative

coverage of the root surface (Hansen et al. 1997) or seed

surface (Hood et al. 1998), but without providing numerical

estimates. However, Watt et al. (2006) estimated that bacte-

ria attached to wheat roots grown in natural soil cover

between 12% and 15% of the root surface area.

2. Microorganisms are not randomly distributed on roots: they

tend to aggregate. The relative scarcity of root-surface colo-

nization by microorganisms has led to the hypothesis that

root colonization is not random and that a few sites on the

root are favorable. Newman and Bowen (1974) used

a statistical approach to pattern analysis of bacterial rhizo-

plane colonization in different plant species. They confirmed

variance in bacterial densities not only on a small scale (fields

100 mMapart), but also on larger scales, that is, along a single

root and between different roots of the same root system.
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Nonrandom aggregation of bacteria on root surfaces was

again demonstrated for tomato roots inoculated with Pseu-

domonas fluorescens under gnotobiotic conditions using

a geostatistical model (Dandurand et al. 1997) and for

wheat roots grown in natural soil (Watt et al. 2006). While

in both cases, nonrandom distribution was conclusive, the

different authors pointed out the difficulty in establishing

the causes underlying the pattern of root colonization, due

to high variance between samples. Patchy distribution was

also confirmed for Euryarchaeota colonizing rice roots

(Grosskopf et al. 1998).

An explanation for the large variance may relate to the mode

of root infection. Although the number of bacteria in a grain of

soil may be huge, they occupy only a minute fraction of the

grain’s surface area (Young and Crawford 2004; Young et al.

2008) and are preferentially associated with organic debris

(including particular organic matter and plant residues). There-

fore, spatial variance in root colonization may, in part, stem

from the low probability of a physical encounter. Indeed, sites

of contact between dead root remnants and live roots have been

shown to be bacterial colonization hot spots in wheat roots

(Watt et al. 2006).

One important aspect is the distance between neighboring

bacterial microcolonies on the root surface, and between

microcolonies in the rhizosphere soil. Since much of microbe-

microbe communication relies on volatile and diffusible chemical

compounds, the distance betweenmicrocolonieswill determine the

degree of interaction between populations. For wheat roots grown

in natural soil, the average distance between bacterialmicrocolonies

was 84 mm (Watt et al. 2006). Quorum-sensing signals of Pseu-

domonas putida were efficient at eliciting a response in

populations as far apart as 37 mm in the root tip/elongation

zone and 78 mm in the root-hair zone (Gantner et al. 2006).

Bacteria are thought to colonize favorable microsites,

including junctions between adjacent cells, cells and regions of

increased rates of root exudation (root cap, root hair, sites of

lateral root emergence), and sites of lysed rhizodermal cells.

Aggregation of bacteria at such sites was corroborated in

a series of experiments tracking root colonization by inoculated

beneficial bacterial strains. In general, the colonization pattern

of inoculants showed a preference for different root features.

Most studies found aggregation of bacteria at junctions between

rhizodermal cells, in agreement with early (Rovira and Campbell

1974; Asanuma et al. 1979) and more recent (Lübeck et al. 2000;

Watt et al. 2006; Ofek et al. 2011) observations of native rhizo-

sphere communities. Foster and Bowen (1982) proposed that

this pattern results from higher rates of exudation at the junc-

tions. Surface roughness, which often affects microbial aggrega-

tion on surfaces (Riedewald 2006), was suggested as an

alternative explanation (Dandurand et al. 1997). Surface prop-

erties, rather than shifts in exudation, were also suggested as an

explanation for abrupt changes in root-colonization patterns

observed on cucumber seedling roots between the root-hair

zone and the tips of emerging lateral roots in that same zone

(Ofek et al. 2011).
Preferential colonization of root segments at different devel-

opmental stages has also been frequently observed in inoculation

studies. For example, Azospirillum brasilense could be found

attached to all types of root surfaces of wheat and several non-

cereal crops, but was most abundant in the root-hair zone, on

root-hair cells, in the elongation zone, and at sites of lateral root

emergence (Bashan et al. 1991; Assmus et al. 1995; Guerrero-

Molina et al. 2011). Bacillus megaterium colonizing Morus alba

(Ji et al. 2010), and Burkholderia cepacia colonizing maize and

rice (Liu et al. 2006), were also found preferentially in the root-

hair zone and sites of lateral root emergence, through which

these bacteria had penetrated the root cortex to reside as endo-

phytes. Favored colonization of sites of lateral root emergence

and the root-elongation zone en route to endophytic coloniza-

tion appears to be common for root endophytes (Senthilkumar

et al. 2011). Root colonization by many plant-growth-

promoting Pseudomonas spp. was highest at the root base and

markedly decreased toward the root tip (Hansen et al. 1997;

Dekkers et al. 2000; Lübeck et al. 2000). This pattern of coloni-

zation was suggested to be related to the method of inoculation

(seed or young axenic seedling inoculation, rather than soil

inoculation) (Benizri et al. 2001). However, investigation of

wheat-root colonization by indigenous soil Pseudomonas

populations revealed that the pattern of distribution is affected

by mechanical impedance of the soil, which dictates the rate of

root elongation (Watt et al. 2003): in loose soil, wheat roots grew

rapidly, and accumulation of native Pseudomonas was positively

related to the distance from the root tip. In compact soil, root

growth was slow and Pseudomonas accumulation was similar

along the entire length of the root. Nevertheless, heterogeneity

in the composition of bacterial colonization of different root

compartments has been demonstrated in community-level stud-

ies (Schallmach et al. 2000; Marschner et al. 2001b; Baudoin

et al. 2002; Marschner et al. 2004).

Examination of differences in community-level densities

between different root compartments has produced contradic-

tory results. Rovira and Campbel (1974) and Asanuma et al.

(1979) concluded that microbial colonization initiates in the

root-hair zone. In contrast, bacterial numbers were highest in

the root cap zone of wheat plants grown in soil, and the elonga-

tion zone was the least colonized (Watt et al. 2006). Bacterial

densities were high on the root tip and in mature root compart-

ments of young cucumber seedlings, while the root-hair zone

was sparingly colonized, if at all (Ofek et al. 2011). These dis-

crepancies most probably result from differences between the

plant-soil systems examined. Altogether, accumulated evidence

suggests that nonrandom distribution of bacteria on the root is

the outcome of variations in the soil, root, and microbiome

characteristics and their interactions.

3. A significant proportion of the root is coated by gels of root

or microbial origin, collectively termed mucilage (Foster

1986). Typically, the mucilaginous material will cover the

root cap and extend from the root tip to the region of root-

hair senescence. In more mature root parts, the mucilage is

usually absent due to microbial degradation (Foster 1986).
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Bacteria have been shown to have an effect on the mucilage,

increasing its amount on the root surface (Bashan et al.

1991). Bacteria have been found embedded in the mucilage

and attached to the roots below it (Rovira and Campbell

1975; Werker and Kislev 1978; Chin-A-Woeng et al. 1997;

Bacilio-Jiménez et al. 2001; Puente et al. 2004; Poonguzhali

et al. 2008). Beyond its role as a nutrient source for the

microorganisms (Mary et al. 1993; Knee et al. 2001; Puente

et al. 2004), the mucilage has been suggested to have protec-

tive value against stressors such as desiccation (Watt et al.

1994). Additionally, it was demonstrated that bacteria

embedded in wheat root mucilage could even resist chloro-

form fumigation (Martin and Foster 1985).
Complexity of the Rhizosphere Microbial
Community

The complexity of biological communities is described by their

taxonomic richness and the relative abundance distribution of

these taxa, collectively termed diversity. Several factors deter-

mine the successful estimation of community diversity: the

adequacy of the sampling effort, the technique used, and the

estimation model. Determination of adequate sample size is

deemed a critical stage in ecological surveys. This is particularly

true for the determination of prokaryotic diversity in soil hab-

itats, as both the numbers of individuals and the numbers of

distinct taxa are exceptionally high (Torsvik et al. 1996; Øvreås

and Torsvik 1998; Whitman et al. 1998; Gans et al. 2005; Roesch

et al. 2007; Fierer et al. 2007 AEM).

Based on major inconsistencies between plate counts and

direct microscopy quantifications, our ability to describe the

prokaryotic diversity of the rhizosphere using culture media was

acknowledged to be poor long before molecular tools were intro-

duced into microbial ecology studies (Rovira 1965; Rovira et al.

1974). For nearly 30 years now, analysis of rhizosphere bacterial

community composition has been based primarily on analyses

of molecular markers, mostly ribosomal (r) RNA gene sequences

and their transcripts, amplified directly from DNA/RNA

extracted from intact samples (Kowalchuk et al. 2010). Methods

such as PCR-denaturing gradient gel electrophoresis (DGGE),

16S rRNA gene-clone libraries, ribosomal intergenic spacer

analysis (RISA), and terminal restriction length polymorphism

(T-RFLP) have allowed us to make a giant leap in understanding

rhizosphere microbial ecology. However, these techniques have

not provided us with anything more than a better characteriza-

tion of the numerically dominant populations. Indeed, the per-

centage of shared taxa detected simultaneously in, for example,

clone libraries compared to cultivation is very low for samples of

rhizospheric soil communities (Dunbar et al. 1999), or rhizo-

plane communities (Kaiser et al. 2001), indicating that we are

still far from a census of rhizospheric bacterial diversity

(Donachie et al. 2007; Dunbar et al. 2002). Novel high-

throughput sequencing technologies have, in essence, lifted the

barrier to adequately sampling complex microbial communities

(Schloss and Handelsman 2006), at least with respect to
molecular markers such as rRNA genes. Although still relatively

few in number, published studies utilizing high-throughput

sequencing for description of root-associated bacterial commu-

nities have vastly improved estimates of diversity (Bardi et al.

2009; Lauber et al. 2009; Manter et al. 2010; Navarro-Noya et al.

2010; Teixeira et al. 2010; Uroz et al. 2010; Gardner et al. 2011;

Gomes et al. 2010; Gottel et al. 2011; Inceoğlu et al. 2011; Kolton

et al. 2011; Ofek et al. 2011; Somenahally et al. 2011).>Table 4.1

provides examples of different diversity estimates derived from

studies employing isolation, clone libraries, and high-

throughput sequencing strategies.

Root-associated populations represent a subset of the bulk

soil community (Normander and Prosser 2000; Weinert et al.

2008). Increasing selective pressure with proximity to the root,

due to the root’s presence and activity, is therefore expected to

result in a gradual decrease in species richness, and a shift in

composition and in relative abundance distribution patterns

(expressed by rank-abundance patterns or evenness/dominance

indices). Reductions in complexity from bulk to rhizosphere

soil, rhizoplane, and endorhiza have been reported for different

wild and cultivated plant species (Germida et al. 1998; Marilley

et al. 1998; Dunbar et al. 1999; Kielak et al. 2008; Ofek et al.

2009). Reduced complexity in rhizosphere soil compared to bulk

soil can also be manifested by an increased level of dominance,

without reduction in species richness (Navarro-Noya et al.

2010). Uroz et al. (2010) reported a 15% decrease in species

richness between the bulk and rhizosphere soils of oak trees,

from 7,070 to 6,018 operational taxonomic units (OTUs) clas-

sified at 97% sequence similarity threshold. Being a soil com-

partment, it is not surprising that species richness in the

rhizosphere soil was of the same order of magnitude as that in

the bulk soil. Similarly, PhyloChip analysis of the rhizosphere of

wild oats (Avena fatua) revealed a significant change in relative

abundance for only 7% of the rhizospheremicrobial community

members (DeAngelis et al. 2009). The rhizosphere effect on

bacterial community complexity is much more pronounced in

the rhizoplane and endorhiza (Marilley et al. 1998; Normander

and Prosser 2000; Green et al. 2006; Belcom and Crowley 2009;

Ofek et al. 2009; Han et al. 2011), where species richness may be

one to two orders of magnitude lower than that of the bulk soil

or rhizosphere soil communities (Gottel et al. 2011; Ofek et al.

2011). Still, hundreds to thousands of species may coexist in

these niches.

The complexity of the rhizosphere microbial community

may increase with plant age for some plant species (Gomes

et al. 2001; Ibekwe and Grieve 2004), and may vary between

cultivars within species, as has been demonstrated for potato

(Inceoğlu et al. 2011). However, the opposite trend has also been

reported (Ibekwe et al. 2010). Selective enrichment of different

microbial consortia at different root locations (Schallmach et al.

2000; Marschner et al. 2001b; Baudoin et al. 2002; Marschner

et al. 2004), by different root types (Marschnner et al. 2002; Ofek

et al. 2007; Weisskopf et al. 2008) or different states of

mycorrhization (Marschner and Baumann 2003; Söderberg

et al. 2002) also contribute to the overall complexity of the

rhizosphere’s microbial community.



. Table 4.1

Examples of published diversity estimates of root associated and soil bacterial communities

Sample Method Sample sizea Diversity estimates

OTUsb Chao1c H0d

Endorhiza

Saccharum officinarume,1 Isolation 44 23

Oryza sativae,2 Clone library 192 52

Populus deltoidesf,3 Pyrosequencing 1,170 86

Solanum tuberosume,4 Pyrosequencing 12,000 477 1,265

Rhizoplane

Trifolium repense,5 Clone library 29 15 0.99

Lycopersicon esculentume,6 Isolation 316 96

Hordeum vulgaree,7 Clone library 466 152

Cucumis sativusg,8 Pyrosequencing 2,379 472 689

Rhizosphere soil

Trifolium repense,5 Clone library 29 23 1.31

Pinyon pinee,9 Isolation 37 14 3.25

Saccharum officinarum e,1 Isolation 61 25

Saccharum officinarum g,10 Clone library 78 64 217 4.09

Pinyon pinee,9 Clone library 212 161 7.09

Colobanthus quitensisf,11 Pyrosequencing 2,709 649 1,363 4.15

Populus deltoidesf,3 Pyrosequencing 4,778 1,319

Sweet peppere,12 Pyrosequencing 5,035 1,660

Quercus sp.f,13 Pyrosequencing 37,000 6,018 12,308

Solanum tuberosume,14 PhyloChip 2,432

Bulk soil

Trifolium repense,5 Clone library 29 27 1.42

Pinyon pinee,9 Isolation 46 8 2.41

Pinyon pinee,9 Clone library 196 154 7.07

Quercus sp.f,13 pyrosequencing 37,000 7,070 16,272

80 different soilsf,15 Pyrosequencing 1,501 1,017

aNumber of individual isolates/clones/amplicons examined
bOperational taxonomic units
cChao1 nonparametric estimate of species richness
dShannon-Weiner index of diversity
eBased on the sum of all individuals examined
fAverages across all samples examined are presented
gOne example from the presented data is presented
1Mendes et al. 2007; 2 Sun et al. 2008; 3Gottel et al. 2011; 4Manter et al. 2010; 5Marilley et al. 1998; 6Shiomi et al. 1999; 7Buddrus-Schiemann et al. 2010; 8Ofek et al.

2011; 9Dunbar et al. 1999; 10 Pisa et al. 2011; 11Teixeira et al. 2010; 12Kolton et al. 2011; 13Uroz et al. 2010; 14Weinert et al. 2011; 15Lauber et al. 2009
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Rhizosphere Microbial Community
Composition

Cultivable Root-Associates

The many limitation of cultivation strategies in microbial ecol-

ogy were repeatedly acknowledged and emphasized by many

authors (Torsvik et al. 1996; Rondon et al. 1999; Amann and

Lodwig 2000; Van Elsas and Bersma 2011). Biased as it may be,

this fraction includes some of the most important plant
symbionts, pathogens, and plant-growth-promoting species. In

many respects, cultivation is irreplaceable even today as the

advantages of high-throughput sequencing technologies

become available to a growing part of the scientific community.

Most importantly, physiology and function of populations can

be inferred from genetic data only in cases where homology to

genetic data obtained from cultivated species or strains

(Giovannoni and Stingl 2007; Nichols 2007).

Over a century of investigation on rhizosphere prokaryotic

communities has relied mostly on cultivation of the
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microorganisms on defined media, thus primarily described

the cultivable aerobic (as well as facultative anaerobic) hetero-

trophic fraction of root-associated prokaryotes, but also specific

groups of autotrophs (e.g., denitrifying bacteria and archaea)

and anaerobes (methanogenic bacteria and archaea). One basic

hypothesis of rhizosphere microbial ecology states that the activ-

ity and numbers of fast-growing opportunistic species

(r-strategists or copiotrophs, as opposed to k-strategists or

oligotrophs) and symbionts will increase with proximity to the

root, due to availability of labile organic carbon or specific

signaling molecules. Where representatives of these specific

groups were targeted, specifically Pseudomonas, Burkholderia,

and Rhizobium, the hypothesis was readily supported by culti-

vation assays (Thies et al. 1995; Schortemeyer et al. 1996;

Grayston et al. 1998b; Miller et al. 2002; Van Elsas et al. 2002;

Berg et al. 2006; Garbeva et al. 2008). However, with respect to

general enrichment of copiotrophs, the picture was more com-

plex. De Leij et al. (1993) have proposed that the concept of

copiotrophs to oligotrophs (C:O) ratios could be examined by

cultivation using defined media, and recording of colony

appearance over long incubation periods. In that study, C:O

distribution that characterized the bulk soil and mature washed

roots of wheat was even, but in roots of young plants

copiotrophs dominated. Using the same method, a shift from

copiotrophs domination to more even C:O distribution during

plant maturation was also reported for maize rhizosphere

(Chiarini et al. 1998; Kozdrój et al. 2004) and wheat roots (De

Leij et al. 1995). In another study, even C:O distribution in the

bulk soil and in maize rhizosphere soil was found regardless of

plant age (Brusetti et al. 2004). Along roots of lettuce (Maloney

et al. 1997) and cucumber (Folman et al. 2001), the C:O ratio

decreased toward the root base. However, in tomato, the ratio

was constant among all root locations (Maloney et al. 1997).

Decrease in C:O ratio tip to base characterized young but not

mature chrysanthemum plants (Duineveld and van Veen 1999).

Although concentrations of labile organic carbon increase with

proximity to the root, Sarathchandra et al. (1997) found that the

proportion of copiotrophs was lower in the rhizoplane com-

pared to rhizosphere soil for Lolium perenne and Trifolium

repens growing in pasture soil. Furthermore, these authors

reported a significant difference in C:O ratios between the two

plant species. Differences in C:O proportions were also reported

for the rhizosphere of a single maize cultivar planted in different

soils (Chiarini et al. 1998).

Cultivation strategies have been used in order to assess the

composition or rhizosphere and root colonizing bacteria with

defined plant-growth-promoting and pathogens antagonistic

properties. Those include phosphorous solubilization, nitrogen

fixation, siderophores production, plant hormones production,

chitinases, and antibiotic substances. The relative abundance of

bacteria showing (in vitro) plant-growth-promotion-related

traits is frequently higher in the rhizosphere compared to bulk

soil. For instance, in the rhizosphere of strawberry and oilseed

rape, the relative abundance of Verticillium antagonists was two

to three times higher compared to the bulk soil (Berg et al. 2002,

2006). Among those Verticillium antagonistic isolates, the
incidence of concomitant antagonism toward other phytopath-

ogenic fungi, as well as production of secondary metabolites and

indole-acetic acid was highly frequent (Berg et al. 2002). Simi-

larly, relative abundance of Rhizoctonia solani bacterial antago-

nists was higher in the rhizosphere of maize, oat, barley, and

Lolium spp. compared to the bulk soil (Garbeva et al. 2008). In

some studies, conducted in temperate European agricultural

soils, Gram-negative bacteria and particularly Pseudomonas

spp. were most dominant among antagonists of fungal plant

pathogens (Berg et al. 2002, 2006; Krechel et al. 2002; van

Overbeek and van Elsas 2008; Zachow et al. 2008). Furthermore,

the occurrence and frequency of antibiotics-producing pseudo-

monads was related to the natural development of take-all

suppressive soils (Raaijmakers et al. 1997; de Souza et al.

2003). This has motivated studies dedicated to exploration of

the diversity of antagonistic rhizosphere pseudomonads in dif-

ferent crops and sites (Picard et al. 2000; Mazzola and Gu 2002;

Garbeva et al. 2004; Bergsma-Vlami et al. 2005; Costa et al.

2006). However, the diversity of cultivated fungal antagonists

includes representatives of many other Gram-negative as well as

Gram-positive genera. Interestingly, in studies performed under

warm climate conditions, Gram-positive bacteria and particu-

larly Bacillus dominated the fungal-antagonistic cultivated

population (Yang et al. 2008; Köberl et al. 2011). Examples

of the dominant taxonomic groups isolated in surveys for single

or multiple plant-growth-promoting traits are listed in
>Table 4.2.
The Contribution of Cultivation-Independent
Methods

The dominant rhizosphere bacterial community generally

includes members of Proteobacteria, Bacteroidetes,

Actinobacteria, Firmicutes, and Acidobacteria. The same groups

are dominant in soils (Roesch et al. 2007; He et al. 2010; Uroz

et al. 2010; Will et al. 2010). Therefore, at such gross level of

resolution, the transition from culture-dependent to high-

throughput culture-independent strategy has little revolution-

ized our view of taxonomy of rhizosphere bacterial community

(> Table 4.3). One striking exception is predominance of

Acidobacteria in the rhizosphere. Members of this group were

recognized as a novel division rather recently (Kuske et al. 1997)

and are poorly represented in standard culture media used for

cultivation and isolation of soil and rhizosphere bacteria. Culti-

vation-independent analyses revealed dominance of

Acidobacteria in the rhizosphere of Lodgepole pine (Chow

et al. 2002), Thlaspi caerulescens (Gremion et al. 2003), and

Oak (Uroz et al. 2010). Remarkable dominance of Acidobacteria

(>50%) was described in the rhizosphere of chestnut tree

(Castanea crenata) in both DNA- and RNA- derived 16S rRNA

clone libraries (Lee et al. 2008). Singh et al. (2007) had reported

a strong rhizosphere effect on Acidobacteria for different grass

species, with high relative abundance in the rhizosphere soil

(29–55%), while in the respective bulk soils relative abundance

was 10% on average. Similar trend was previously observed for



. Table 4.2

Examples of dominant bacterial genera retrieved in cultivation-based surveys of plant-growth-promoting bacteria

Functional group Dominant taxa

Fungal/bacterial pathogens

antagonists

5Arthrobacter, 1Azotobacter, 1,3,5,13,21Bacillus, 11Brevundimonas, 21Burkholderia, 13Chryseobacterium,
13Enterobacter, 20Flavobacterium, 13,20Lysobacter, 5Micrococcus, 13Paenibacillus, 13Pantoea,
1,3,4,5,6,9,13,20Pseudomonas, 4,5,13Serratia, 5,13,16,20Streptomyces

Chitin/glucan degrading enzymes 5Arthrobacter, 5,7Bacillus, 5Micrococcus, 28Micromonospora, 6Pantoea, 5,7,27Pseudomonas, 6,28Serratia,
27Stenotrophomonas; 5,28Streptomyces

Nematocidal activity 26Agrobacterium, 26,27Bacillus, 24Burkholderia, 24Corybacterium, 22,23,25,27Pseudomonas, 22Rhizobium,
27Stenotrophomonas, 25Streptomyces

Siderophores production 8Achromobacter, 10Agrobacteirum, 5Arthrobacter, 1Azotobacter, 1,5,8,15Bacillus, 2Bradyrhizobium,
8Brevundimonas, 15Chryseomonas, 8Ensifer, 7Flavobacterium, 14Methylobacterium, 8,10Microbacterium,
5Micrococcus, 8Ochrobacterium, 14Okibacterium, 1,5,7,10Pseudomonas, 10Ralstonia, 2Rhizobium,
14Rhodococcus, 8, 10,15Serratia, 8Sinorhizobium, 5,16Streptomyces

Phytohormones production 8Achromobacter, 12Acinetobacter, 10Agrobacterium, 10,12Alcaligenes, 10Arthrobacter, 1Azotobacter,
1,8,12,15Bacillus, 2Bradyrhizobium, 8,11Brevundimonas, 11Burkholderia, 1,6,10,11,12Pseudomonas,
1Mesorhizobium, 2Rhizobium, 8,10Microbacterium, 11,15Chryseomonas, 12Enterobacter,
8Ochrobacterium, 12Pantoea, 10Ralstonia, 10,15Serratia, 8,10Sinorhizobium, 11Sphingomonas,
11,15Stenotrophomonas, 16Streptomyces

Associative nitrogen fixation 19Alcaligenes, 17,19 Azospirillum, 17Azoarcus, 7Bacillus, 7,11Burkholderia, 11,15Chryseomonas,
19Enterobacter, 7Flavobacterium, 19Klebsiella, 19Pantoea, 11Pseudomonas, 11Sphingomonas,
19Xanthobacter, 17Zoogloea

Phosphate solubilization 7Acinetobacter, 1Azotobacter, 1,15,18Bacillus, 2Bradyrhizobium, 18Burkholderia, 1Mesorhizobium,
18Pantoea, 1,7Pseudomonas, 2Rhizobium, 15Serratia, 15Stenotrophomonas, 18Streptomyces

1-Aminocyclopropane-1-carboxylic

acid degradation

8Achromobacter, 10Alcaligenes, 7,8Bacillus, 8Ensifer, 14Methylobacterium, 8Microbacterium,
8Ochrobacterium, 14Okibacterium, 7,10Pseudomonas, 8Sinorhizobium

1Ahmad et al. 2008; 2Antoun et al. 1998; 3Aranda et al. 2011; 4Berg et al. 2002; 5Berg et al. 2005; 6Berg et al. 2006; 7Cattelan et al. 1999; 8 Cavalca et al. 2010; 9de

Souza et al. 2003; 10Dell’Amico et al. 2005; 11Donate-Correa et al. 2004; 12Egamberdleva et al. 2008; 13Garbeva et al. 2008; 14Idris et al. 2004; 15Idris et al. 2009;
16Khamna et al. 2009; 17Malik et al. 1997; 18Oliveira et al. 2009; 19Oyaizy-Masuchi and Komagata 1988; 20van Overbeek and van Elsas 2008; 21Yang et al. 2008;
22Ashoub and Amara 2010; 23Kluepfel et al. 1993; Kloepper et al. 1992; 25Krechel et al. 2002; 26Racke and Sikora 1992; 27Insunza et al. 2002; 28El-Tarabily et al. 2000
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Lolium perenne (Mariley and Aragno 1999), but, for Trifolium

repens grown in the same soil, Acidobacteria relative abundance

in all rhizosphere compartments was lower than in the bulk soil.

For the class Holophagae, within Acidobacteria, a complex

response to root proximity was described (da Rocha et al.

2010). The abundance of Holophagae increased between the

bulk soil and outer rhizosphere of leek (Allium porrum), but at

the inner rhizosphere abundance had dropped below the bulk

soil levels. With a rare exception (Zhang et al. 2011b), a high

level of Acidobacterial dominance appears to be more common

among trees in native habitats and wild plant species relative to

agricultural crops.

The advantage of culture-independent strategies is highly

evident in fine resolution description of microbial communities.

Cultivation-independent methods facilitate the discovery and

investigation of novel important lineages (at the genera and

species level), even within the most common root-associated

ones (Kowalchuk et al. 2010). We focus on the genus Massilia

(Oxalobacteraceae, b-proteobacteria) as an example. Members

of Massilia were first isolated from clinical samples and were

defined as a novel genus less than 15 years ago (La Scola et al.

1998; Lindquist et al. 2003). In recent years, Massilia were

described in environmental samples of many sources (including
air, dust, and soil samples) over a wide geographic distribution,

using culture-independent techniques (Nagy et al. 2005;

Pakarinen et al. 2008; Blatny et al. 2011). Such techniques have

also placed Massilia among dominant and important root-

colonizing bacteria of many plant species (Dohrmann and

Tebbe 2005; Abou-Shanab et al. 2007; Green et al. 2007; Weinert

et al. 2010; Brooks et al. 2011; Weisskopf et al. 2011), indicating

high underestimation of this group’s prevalence using cultiva-

tion strategies (Weisskopf et al. 2011). Particularly high domi-

nance of Massilia was found in the spermosphere and roots of

young seedlings of cucumber (Green et al. 2007; Ofek et al. 2009;

Ofek et al. 2011). Similarly, root age-related decline in Massilia

dominance was reported in cluster roots of white lupin

(Weisskopf et al. 2011). Like numerous other ‘‘novel’’ root-

associated bacterial lineages, the ecological significance and

role of this group in the rhizosphere niche remains to be

elucidated.
Role of Archaea

Since their discovery in the late 1970s (Woese and Fox 1977),

Archaea were traditionally associated with extreme
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environments and therefore rarely studied in soils, and even less

in association with plant roots. Rhizosphere colonizing Archaea

first received attention due to observation of methane produc-

tion by rice roots placed under anoxic conditions (Frenzel and

Bosse 1996). Soon after, it was reported that Archaea may appear

in substantial relative abundance in the rhizoplane of mature

rice plants, as indicated by the Archaeal signature compounds—

diether lipids (Richardt et al. 1997). It was then confirmed by

analysis of Archaea-specific clone libraries that the rhizoplane of

rice was inhabited by Archaea including both Crenarchaeota

and Euryarchaeota (Grosskopf et al. 1998). The composition of

Archaea associated with rice and other waterlogged plant roots

and rhizosphere is dominated by Euryarchaeota (Conrad et al.

2008; Cadillo-Quiroz et al. 2010; Kao-Kniffin et al. 2010),

including important families of known methanogens such as

Methanosarcinaceae, Methanosaetaceae, Methanomicrobiaceae,

and Methanobacteriaceae. Novel Euryarchaeal lineages discov-

ered in the rice rhizosphere (Grosskopf et al. 1998;

Ramakrishnan et al. 2001), mainly rice cluster I, were later

classified as methanogens with wide global distribution (Conrad

et al. 2006) and may substantially contribute to methane emis-

sion from rice fields into the atmosphere.

In moderate dry oxic soils, rhizosphere-associated

Crenarchaeota were first reported for young and senescent

roots of tomato grown in field soil (Simon et al. 2000).

Crenarchaeota were consistently detected in various plant spe-

cies grown in a native temperate environment (Sliwinski and

Goodman 2004). In contrast, in rhizosphere samples of plants

grown in high altitude, detection of Archaea was rare and incon-

sistent (Ferrero et al. 2010). Furthermore, no Archaea were

detected in the rhizosphere of different proteaceae species

(Stanfford et al. 2005). In contrast to plants with waterlogged

root systems, Crenarchaea dominate the Archaeal community

associated with rhizosphere, roots, and mycorrhiza of plants

growing in such soils (Nelson et al. 2010; Bomberg et al. 2011).

Another archaeal group of functional importance is ammo-

nia oxidizing Archaea (AOA). AOA were found in the rhizo-

sphere and on roots of several plant species, including Zea mays,

Vicia faba, Brassica oleracea, and the macrophyte Littorella

uniflora (Herrmann et al. 2008; Fan et al. 2011; Kleineidam

et al. 2011; Nelson et al. 2010). Similarly to soils (Leninger

et al. 2006), AOA appear to predominate the ammonia-

oxidizing consortium in the rhizosphere (Kleineidam et al.

2011; Nelson et al. 2010). However, the diversity of rhizosphere

colonizing AOA may be lower than that of ammonia oxidizing

bacteria (Fan et al. 2011). >Table 4.4 describes the composition

of Archaea associated with different plant species.
Effect of Mycorrhizal Association

Arbuscular mycorrhizal and ectomycorrhizal fungi (AMF and

EMF, respectively) create a new structure and function for the

rhizosphere, also termed ‘‘mycorrhizosphere.’’ The unique rela-

tionships in the mycorrhizosphere, compared to the non-

mycorrhizal rhizosphere, change the allocation of plant
resources between the rhizosphere bacteria and the symbiotic

partner. On the other hand, the contribution of the mycorrhizal

fungi affects the plant’s physiology and root environment with

respect to mineral nutrition and water availability (Bending

et al. 2006).

The effect of AMF on rhizosphere bacterial communities has

been investigated mostly by inoculation studies. Such experi-

ments have revealed consistent differences between bacterial

consortia associated with mycorrhitic and non-mycorrhitic

roots and the activity of selected microbial enzymes (Vázquez

et al. 2000; Marschner et al. 2001a; Söderberg et al. 2002;

Wamberg et al. 2003; Marschner and Timonen 2005; Roesti

et al. 2006; Vestergard et al. 2008; Solı́s-Domı́nguez et al.

2011). Offre et al. (2007) compared and distinguished bacterial

communities colonizing mycorrhiza ofMedicago truncatula and

roots of a mutant plant that does not form mycorrhiza. EMF

effects have been studied by inoculation and by analysis of

mycorrhizal and non-mycorrhizal roots sampled in the field

(Olsson and Wallander 1998; Timonen et al. 1998; Probanza

et al. 2001; Faye et al. 2009). These reports present mycorrhiza-

related shifts in the bacterial community assemblages.

Infection with mycorrhizal fungi results in systemic changes

in the plant. Therefore, changes in the rhizosphere bacterial

community structure and/or function could be an indirect

response to the mycorrhiza. Such an indirect effect was demon-

strated by Marschner and Baumann (2003) in maize using

a split-root system. The bacterial communities in the non-

mycorrhitic half of the root system were different from respec-

tive controls where neither half of the root system was inocu-

lated. Unfortunately, however, this exciting topic has not yet

been further explored.

Changes observed in the mycorrhizosphere bacterial com-

munity can be attributed to local and direct effects of the fungi

or indirect effects mediated by systemic changes in the infected

plant. A direct effect might simply be attachment of soil bacteria

to the hyphae of the mycorrhizal fungus. For example, Scheublin

et al. (2010) showed rapid colonization of bacteria from the

family of Oxalobacteraceae and Pseudomonas. Based on the

high frequency of Oxalobacteraceae, those authors suggested

the existence of a specific interaction (Scheublin et al. 2010).

Offre et al. (2007) also identified bacterial groups belonging to

the Oxalobacteraceae preferentially associated with mycorrhizal

roots of Medicago truncatula. FISH analysis of the ectomycor-

rhizosphere of beech (Fagus sylvatica) growing in a natural forest

revealed bacteria of the a-, b, and g subclasses of the

Proteobacteria attached in high numbers to the mantle surfaces

(Mogge et al. 2000). One mechanism suggested for the direct

effect is the influence of arbuscular mycorrhizal mycelial exu-

dates on soil bacterial growth and community composition.

Toljander et al. (2007) used a split Petri dish system to produce

mycelial exudates. Following amendment of soil with these

exudates, a significant shift in soil bacterial community compo-

sition occurred, marked by significant enrichment of specific

Enterobacteriaceae members. Frey-Klett et al. (2005) argued that

ectomycorrhizal symbiosis also has an indirect positive effect on

the plant via its selective pressure on bacterial communities.
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They showed that ectomycorrhizal symbiosis determines the

structure of Pseudomonas fluorescens populations in the soil

and selects for potentially beneficial bacteria. Soil bacteria can

promote mycorrhizal formation by means of a variety of mech-

anisms (Poole et al. 2001; Rigamonte et al. 2010), and such

communities have been termed ‘‘mycorrhization helper bacte-

ria’’ (MHB). Among the identified lineages of MHB are bacteria

belonging to diverse groups and genera, such as Gram-negative

Proteobacteria (Agrobacterium, Azospirillum, Azotobacter,

Burkholderia, Bradyrhizobium, Enterobacter, Pseudomonas, Kleb-

siella, and Rhizobium), Gram-positive Firmicutes (Bacillus,

Brevibacillus, and Paenibacillus), and Gram-positive actinomy-

cetes (Rhodococcus, Streptomyces, and Arthrobacter) (Bending

et al. 2002; Artursson et al. 2006; Frey-Klett et al. 2007).
. Fig. 4.1

Pythium aphanidermatum hyphae (white arrows) infecting the

seed coat of cucumber seed following 24 h of germination in

P. aphanidermatum-inoculated perlite. Seed samples were stained

with DAPI (blue) and hybridized with fluorescently labeled probe

EUB338, targeting the domain Bacteria (red) (Image was taken by

confocal laser-scanning microscopy)
Bacterial Communities Associated with Roots
of Pathogen-Infected Plants

Pathogen infection and disease propagation affect the host

plant’s physiology in many ways which, in turn, can locally (at

the site of infection) or systemically affect plant-bacteria inter-

actions. This issue is relatively unexplored. However, several

studies have compared the composition and structure of micro-

bial communities associated with healthy and diseased plants.

Yang et al. (2001) compared rhizosphere bacterial commu-

nities associated with healthy and Phytophthora-infected avo-

cado roots using 16S rRNA gene fingerprinting. In that study,

bacterial communities from healthy roots were represented by

a few predominant species, and were approximately 80% similar

in structure among replicates. In contrast, roots that were

infected with Phytophthora, but which did not yet show visible

symptoms of disease, were colonized by much more variable

bacterial communities with significantly different structures

from those of healthy roots. The effect of oomycete pathogens,

including Phytophthora cryptogea, Pythium aphanidermatum,

and Pythium group F, was also examined in a soilless growth

system with tomatoes (Cavalo-Bado et al. 2006). There, an

increase in bacterial abundance was found associated with

oomycete-infected roots, but the community composition was

unaltered. In another study, infection of tomato plants with

Phytophthora nicotianae did not significantly affect the bacterial

community structure (Lioussanne et al. 2010). Comparison to

infection with the AM fungi Glomus intraradices or Glomus

mosseae suggested that rhizospheric bacteria are less sensitive

to pathogen invasion than to mycorrhizal colonization. Tomato

rhizosphere bacterial communities were also examined in

response to infection with Fusarium oxysporum f. sp. radicis

lycopersici and its biocontrol antagonistic Fusarium strain

(F. solani strain FsK) (Karpouzas et al. 2011). These introduc-

tions also resulted in only marginal response of the bacterial

community.

In a Pythium aphanidermatum-cucumber experimental

pathosystem, multiple aspects of the spermosphere bacterial

communities significantly differed between inoculated and con-

trol germinating seeds (Ofek et al. 2011). Microscopic
examination of germinating seeds revealed bacterial crowding

at sites of seed infection by Pythium hyphae and heavily colo-

nizing the hyphae themselves (> Fig. 4.1). Furthermore, the

spermosphere of infected seeds had significantly lower diversity

and was dominated (66% of the total bacteria) by members of

the genus Massilia (Oxalobacteraceae).

Two interesting studies examined the rhizosphere of healthy

plants and plants with natural incidence of disease. Filion et al.

(2004) selected healthy and diseased root rot-symptomatic sam-

ples of roots from black spruce (Picea mariana) seedlings grow-

ing in a nursery. The rhizosphere-associated bacterial and fungal

communities of healthy and diseased P. mariana seedlings dif-

fered: the main differences described at the community level

were a higher proportion of Acidobacteria, Gammaproteo-

bacteria, and Homobasidiomycetes clones associated with

healthy seedlings, while the diseased-seedling rhizosphere

showed a higher proportion of Actinobacteria, Sordariomycetes,

and environmental clones. The authors debated on whether the

communities associated with healthy roots might be responsible

for disease suppression or whether their presence is simply

a direct consequence of the absence of the pathogen. In

a recent study, the rhizosphere of scab-diseased apple trees was

compared to that of disease-free ones (Shanmugam et al. 2011).

There, while the rhizosphere bacterial community composition

and structure were similar, the activities of chitinase and b-1,3
glucanase were higher in rhizosphere samples from disease-free

plants.
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Contradictory observations could be the result of variation

between the studied systems or of higher complexity of the

rhizosphere of diseased plants and its multiple effects. Microbial

communities in the rhizosphere of healthy and diseased plants

may promote suppression via antagonism, induce resistance, or

modify patterns of root-exudate release. Thus, the effects on the

community could be either direct or indirect. Nevertheless,

additional studies may shed more light on the interactions

occurring in the rhizosphere of infected plants and may assist

in developing ecologically based control methods. It is assumed

that specific populations provide protection and that these will

eventually be developed for biological control.
Effects of Agrosystem Management on
Rhizosphere Bacterial Communities

Agricultural practices designed to improve plant performance

and yield may result in nontargeted rhizosphere modulation.

For example, the composition of rhizosphere bacterial commu-

nities of cucumber and sudan grass seedlings shifted following

nitrogen or phosphorus fertilization of nitrogen- and phospho-

rus-deficient soils (Marschner et al. 2004). In iron-limited soil,

foliar application of iron shifted the composition of the root-

associated bacterial community (Yang and Crowley 2000).

Changes in rhizosphere bacterial community composition and

activity have been observed to result from crop rotation prac-

tices and land-use history (van Elsas et al. 2002; Alvey et al. 2003;

Salles et al. 2004; Garbeva et al. 2008). Shifts in bacterial com-

munity composition in response to herbicides (Sessitsch et al.

2004) or pesticides (Lin et al. 2007) and a strong effect of tillage

practice (Griffiths et al. 2007) have also been reported.

Other soil treatments aim to modify or manipulate specific

or general rhizosphere components. These include organic soil

amendments, introduction of plant-beneficial organisms via

inoculation (i.e., Rhizobium, mycorrhiza, associative plant-

growth-promoting rhizobacteria), application of chemical or

biocontrol agents, and genetically engineered plants.
Effect of Organic Soil Amendment

Long-term experiments (16–50 years) have confirmed that dif-

ferent fertilization regimes, both organic and inorganic, affect

soil bacterial communities to varying degrees, in terms of bio-

mass, activity, and composition (Enwell et al. 2005; Ros et al.

2006; Widmar et al. 2006; Chu et al. 2007; Esperschütz et al.

2007; Toljander et al. 2008). Generally, organic amendments

(manures, green and dry plant residues, sewage sludge, and

compost) have more pronounced effects on the soil microbial

communities than mineral fertilization. Organic soil amend-

ments and compost improve soil structure, elevate soil content

of organic matter, and supply macro- and micronutrients.

Moreover, compost application to soil results in the introduc-

tion of a rich and diverse microbial community. Thus, the effects

on the rhizosphere community can be either direct or indirect,
by changing the abiotic root environment. Several studies have

provided evidence for the persistence of amendment-derived

microbes in association with the rhizosphere. Germinating

seeds were colonized by amendment-derived microbes and this

community changed during the transition from spermosphere

to rhizosphere (Green et al. 2006; Ofek et al. 2011). The rhizo-

sphere bacterial community is distinct in compost-amended soil

compared to non-amended soil (Benitez et al. 2007; Tiquia et al.

2002). Root-associated communities of cucumber seedlings

grown in perlite medium were more diverse but less abundant

in the presence of disease-suppressive compost than in the non-

amended controls (Ofek et al. 2009). Rhizosphere colonization

by Streptomyces was affected by compost amendment (Inbar

et al. 2005). This impact was strongly affected by proximity to

the root and compost concentration. While the compost’s effect

on the community was mitigated with increasing proximity to

the root, high levels of compost amendment resulted in the

detection of compost-derived species, even on the root surface.

On the other hand, in both rhizosphere and non-rhizosphere

soils, the community composition of Streptomyces was strongly

affected by even modest compost amendment (Inbar et al.

2005).

Jack et al. (2011) tested the effect of organic amendments on

growth, field performance, and rhizosphere bacterial communi-

ties of tomato plants. They showed that different amendments

significantly affect rhizosphere bacterial communities. These

differences persisted for at least 1 month after seedlings were

transplanted to the field, then diminished over the course of the

field season (Jack et al. 2011). In cucumbers, compost had

qualitative and quantitative effects on bacterial communities

colonizing roots of young cucumber plants. These effects were

dynamic in nature and strongly related to plant age (Ofek et al.

2009, 2011). Soil amendment with chitin resulted in shifts in

both soil and rhizosphere bacterial community size and compo-

sition (Hallmann et al. 1999). On the other hand, Scott and

Knudsen (1999) found that residues of rape as green manure

had no effect on heterotrophic bacteria colonizing the rhizo-

sphere of pea.
Inoculation with Plant-Growth-Promoting
Rhizobacteria (PGPR) and Biocontrol Agents

Introduction of microorganisms by inoculation represents

a technically simple approach to directly modifying the rhizo-

sphere. Indeed, this approach has high appeal as it proposes

a targeted solution for the purposes of sustainable agriculture

and is considered inexpensive and environmentally benign. The

objectives of inoculation are diverse and include enhancement

of symbiotic and associative nitrogen fixation, plant-growth

promotion, improvement of plant nutrition, control of plant-

pathogenic microorganisms, and degradation of contaminating

xenobiotic compounds (Vessey 2003; Lugtenberg and Kamilova

2009). PGPR and biocontrol species of bacteria are primarily

rhizosphere, rhizoplane, and endophytic microorganisms; how-

ever, their natural quorum is relatively low and insufficient to
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induce the desired positive effect. Enrichment through inocula-

tion can potentially increase their abundance so that their

phytoeffective potential can be expressed. Several recent reviews

have described the high and still growing number of formulated

and tested inoculants, and their plant-growth-promoting and

biocontrol mechanisms and activities (Rodrı́guez-Dı́az et al.

2008; Lugtenberg and Kamilova 2009; Compant et al. 2010a;

Dutta and Podile 2010; Hayat et al. 2010). Here, we focus on the

successful establishment of inoculated bacteria and their effect

on the indigenous resident community.

Integration and nontarget effects on bacterial communities

were studied for different plant-growth-promoting and biocon-

trol agents. Apparently, a prominent effect of crop plant inocu-

lation with PGPR or biocontrol bacterial agents on resident

bacterial communities is rare, transient, and spatially limited.

This was the case with associative nitrogen-fixing Azospirillum

(Bashan et al. 1995; Herschkovitz et al. 2005a, b; Lerner et al.

2006; Felici et al. 2008; Pedraza et al. 2009), antibiotic-producing

Pseudomonas (rev. in Castro-Sowinski et al. 2007), siderophore-

producing Pseudomonas (Buddrus-Schiemann et al. 2010),

phytohormone-producing Pseudomonas, Serratia, and Pantoea

(Lottmann et al. 2000; Mishra et al. 2011), among others.

One clear exception to the rule is the response of resident

rhizospheric microbial communities to inoculation with host-

compatible symbiotic nitrogen-fixing rhizobia. The establish-

ment of Sinorhizobium meliloti in the rhizoplane of its host

plant, Medicago sativa, and in the rhizoplane of a non-host

plant, Chenopodium album, was examined in a field experiment

(Schwieger and Tebbe 2000). Following inoculation of the soil by

spraying and 12 weeks of growth, the abundance of S. meliloti

had increased in the rhizoplane of both plants. However, the

numbers of S. meliloti were two orders of magnitude higher for

the host compared to the non-host plant. Marked changes in the

composition of total and cultivable bacterial communities were

found in the host plant, while communities of non-host plants

were unaffected. A specific effect of S. meliloti on the indigenous

rhizospheric bacterial community in the host but not non-host

plants was also demonstrated by Miethling et al. (2000) in

a mesocosm experiment. Similarly, significant shifts in bacterial

community composition due to host-compatible rhizobial inoc-

ulation have been reported for common bean (Robleto et al.

1998), faba bean (Zhang et al. 2010), and soybean (Zhang et al.

2011a).

Another emerging exception is the effect of PGPR inocula-

tion in forest trees. Inoculation with two phytohormone-

producing Bacillus PGPRs resulted in shifts in total and

cultivable bacterial communities associated with roots of Pinus

pinea seedlings (Probanza et al. 2001, 2002). This effect lasted

months after a single inoculation. Lucas-Garcı́a et al. (2004)

inoculated pine and holm oak with PGPR strains belonging to

Enterobacter, Pseudomonas, Cryseobacterium, and Phosphoric

bacillus. There, perturbation of the tree seedlings’ rhizospheric

bacterial communities was robust, but varied in degree for

the different specific bacteria-plant pair examined. In

another survey of ten isolates selected for their plant-growth-

promoting potential, inoculation of one strain (Arthrobacter sp.)
resulted in a strong alteration of P. pinea seedlings’ rhizospheric

bacterial community, along with a strong positive effect on

the seedlings’ growth (Barriuso et al. 2008). Inoculation of

European alder with auxin-producing Bacillus pumilus showed

contrasting results for two different soils (Ramos et al. 2003):

in the native soil from which the isolate was retrieved, the

inoculation effect appeared early and was transient; in the sec-

ond soil, the effect of inoculation on the resident bacterial

community was most pronounced at late stages of the experi-

ment (6 and 8 weeks).

Some inoculants, such as biocontrol agents, are selected for

their ability to compete with other microorganisms. Neverthe-

less, it seems that their ability to change the bacterial balance in

the rhizosphere is limited in most cases and transient in others.
Plant Genetic Manipulation Targeting
Rhizosphere Associations

Relying on the concept that root deposits are the major selective

factor in root-microbe associations, Ryan et al. (2009) reviewed

the possibilities for rhizosphere engineering. One suggested

route for manipulation was interference with central metabolic

pathways. For example, a fourfold greater efflux of citrate from

tobacco seedlings was achieved by transformation with a citrate

synthase gene from Pseudomonas aeruginosa (de la Fuente et al.

1997). The effect of extensive citrate release on rhizosphere

bacteria can be demonstrated by the case of white lupin

(Lupinus albus) cluster roots. This specialized type of root is

produced in response to low phosphorus availability. When the

cluster root matures, large amounts of citrate are released for the

purpose of phosphorus chelation. This event coincides with

a significant decrease in the number of root-associated and

rhizospheric bacteria and a dramatic shift in their composition

(Weisskopf et al. 2005). Another possibility for the manipula-

tion of root exudate composition or amount is through modi-

fication of transporter proteins. Recently, this was demonstrated

in Arabidopsis thaliana (Bardi et al. 2009). A single mutation in

an ABC transporter (abcg30) resulted in more phenolics and

fewer sugars in the exudates, compared to the wild type. This

shift in exudate profile resulted in a substantial shift in the root-

associated bacterial community, including an increase in the

relative abundance of operational taxonomic units (OTUs)

related to known PGPR species. These examples may be limited,

but clearly demonstrate the potential for designed rhizospheres.

However, the magnitude and consequences of such modifica-

tions in root depositions will require a thorough determination

of possible undesirable effects.
Plant Genetic Manipulation: Rhizosphere Bacteria
as Nontarget Organisms

Genetic engineering has been applied to crop plants to address

different agricultural traits, for example, resistance to chemical

herbicides, insect pest resistance, stress tolerance, and food quality.



724 Plant Rhizosphere Microbial Communities
Herbicide-resistant transgenic crop lines are the most wide-

spread transgenic crops in commercial use. Among these,

glyphosate- or glufosinate-resistant lines have beenmost studied

with respect to possible nontarget rhizosphere effects (Kremer

and Means 2009). Studies of oilseed rape (Brassica napus) culti-

vars yielded variable results. Siciliano and Germida (1999) iso-

lated heterotrophic rhizospheric bacteria and endorhiza of cv.

Excel and its glyphosate-resistant derivative ‘‘Quest’’ and found

that in the genetically modified line, bacteria of the genera

Bacillus, Micrococcus, Variovorax, and Arthrobacter were nega-

tively affected whereas Flavobacterium and Pseudomonas were

enriched. Confirming this result, both fatty acid methyl ester

and carbon-substrate utilization profiles of the total endorhizal

communities were found to vary between these lines (Dunfield

and Germida 2001). Conversely, comparative analysis using

PCR-DGGE revealed only a minor and growth-stage-dependent

effect of glufosinate-tolerance introduction on the total rhizo-

sphere bacterial community and on the composition of Pseudo-

monas populations (Gyamfi et al. 2002). Similarly, Sessitsch et al.

(2004) found that the effect of the transgenic modification on

rhizosphere bacterial communities’ DGGE profiles and selective

activities was more apparent at early stages of oilseed rape

growth. The total (Schmalengerger and Tebbe 2002) and

denitrifying (Philippot et al. 2006; Hart et al. 2009) bacterial

communities in the rhizosphere of maize were similar for con-

ventional and glyfosate-resistant lines, whereas a study of

sugar beet (Beta vulgaris) varieties revealed differences in the

compositions of rhizosphere bacterial communities of conven-

tional versus herbicide-resistant plants, as determined by

genetic fingerprinting of 16S rRNA genes (Schmalenberger and

Tebbe 2003). In contrast, a reduction in cultivable fluorescent

Pseudomonas was found in a comparison of conventional and

glyphosate-resistant soybean (Kremer and Means 2009).

Another example of a widely commercialized transgenic trait

is insect resistance, conferred by genetic modification for expres-

sion of the crystal (Cry) protein from the bacterium Bacillus

thuringiensis (Bt crops). The protein may be released from the

roots into the rhizosphere through natural wounding of roots

and from sloughed-off and senescent cells, resulting in nontarget

effects. Brusetti et al.’s (2004) study indicated a significant effect

on cultivable and total bacterial communities in Bt compared to

nontransgenic maize. In addition, the numbers of some cultiva-

ble bacterial groups (nitrogen-fixing, phosphorus-solubilizing,

potassium-solubilizing) were lower in Bt lines of cotton com-

pared to the parental line during the early and mid-stages of

growth (Rui et al. 2005). In contrast, reports from experiments

with maize (Baumgrate and Tebbe 2005), rice (Liu et al. 2008;

Wu et al. 2009a), and Brassica rapa (Jung et al. 2008) concluded

that the nontarget effect of Bt transformation is marginal.

T4 lysozyme expression in transgenic crops is a strategy

developed to overcome plant diseases for which the pathogenic

agent is a bacterium (e.g., Erwinia carotovora). Indeed, in cell-

free extracts of tubers from transgenic potatoes, the lytic activity

against bacterial cultures was higher than that present in the

nontransgenic lines (De Vries et al. 1999). Those bacteria

included Gram-positive and Gram-negative plant-pathogenic
species, but also plant-growth-promoting species, such as Rhi-

zobium leguminosarum. In addition, Ahrenholtz et al. (2000)

demonstrated increased killing of inoculated Bacillus subtilis at

the root-hair zone of potato roots. It is therefore surprising that

a set of subsequent experiments concluded that the effect of T4

lysozyme expression in potatoes on rhizosphere or root endo-

phytic bacterial communities is minor compared to the effects of

other factors, such as the soil or site, or plant growth stage

(Lottmann et al. 1999, 2000; Heuer et al. 2002; Rasche et al.

2006 FEMS; van Overbeek and van Elsas 2008). This lack of

effect was explained by accelerated degradation of the T4 lyso-

zyme by proteases in the soil, and by inaccessibility of the

residing bacterial population. Similar results were obtained

with transgenic plants modified to produce other enzymes,

including lytic peptides (Sessitsch et al. 2003; Rasche et al.

2006FEMS) and lectins (Griffiths et al. 2000), and with zeaxan-

thin- (Weinert et al. 2009) and amylopectin-accumulating

(Gschwendtner et al. 2010a, b; Gschwendtner et al. 2011) trans-

genic plants.

Overall, the different genetic modifications of plants rarely

result in an overhaul of the rhizosphere bacterial community. It

is therefore likely that the fraction of affected populations is

small, and high-resolution methods are required for their detec-

tion and identification. Nevertheless, such effects should be

considered on a case-by-case basis.
Consequences of Climate Change

One of the most important challenges faced by the scientific

community today is predicting the outcome of global climate

change on ecosystem functioning. With respect to soil microbial

communities, this challenge is deemed difficult to impossible,

due to its complexity and the virtually infinite ways in which

different climate drivers (CO2 and O3 concentrations, tempera-

ture, precipitation, UV-B radiation) and their interactions

might affect soil microorganisms and their activities (Bardgett

et al. 2008). As the ‘‘hotspot’’ of microbial activity in soil, the

effects of changes in climate drivers may be most pronounced in

the rhizosphere. Moreover, rhizosphere processes may be central

to plant productivity responses to elevated atmospheric CO2

and, consequently, important controllers of the ecosystem

response (Phillips 2007). Among rhizospheric processes, those

related to the status of mineral nutrients should be specifically

considered, since their availability may determine the plant’s

response to climate changes (Lewis et al. 2010; Tobita et al.

2011).

The most explored changing climate driver in rhizosphere

research is elevated atmospheric CO2 (eCO2) (Drigo et al. 2008).

Generally, atmospheric enrichment in CO2 increases productiv-

ity of both C3 and C4 plants through stimulation of photosyn-

thesis and improved water-use efficiency (Wand et al. 1999;

Morgan et al. 2004; Lopes and Foyer 2012). However, the effect

of eCO2 varies with plant species and in response to variations

in abiotic conditions, including nutrient availability, tempera-

ture, soil moisture, and salinity, among others (Lopes and
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Foyer 2012). With respect to below-ground plant responses,

increased root biomass (Ferris and Taylor 1993; Rogers et al.

1994; Phillips et al. 2009), changes in root morphology

(Pregitzer et al. 2000; Larigauderie et al. 1994), and increased

mycorrhization (rev. by Drigo et al. 2008 and by Compant et al.

2010b) have all been reported. However, most important might

be changes in the amount and composition of root depositions.

Increases in rhizodeposition have been reported in several stud-

ies (de Graaff et al. 2009; Phillips et al. 2009, 2011), but the

opposite situation has also been indicated (Augustine et al.

2011). All of the above are considered key factors affecting the

root-associated prokaryotes. Therefore, shifts in rhizospheric

microbial communities’ biomass, composition, and activity are

anticipated (Dı́az et al. 1993; Paterson et al. 1997). However, in

comparison to the fairly conclusive results regarding fungi, and

in particular mycorrhiza (Compant et al. 2010b), the responses

of rhizospheric prokaryotes to eCO2 have been much more

difficult to generalize.

A number of methods have been used to estimate the effect

of eCO2 on the size of rhizosphere microbial communities,

including chloroform fumigation, determination of phospho-

lipid fatty acids (PLFA), direct viable counts, cultivation on

defined media, and quantitative real-time PCR, with mixed

results (Zak et al. 2000; Drigo et al. 2008). Rattray et al. (1995),

Paterson et al. (1996) and Griffiths et al. (1998) reported

a significant reduction in the proportion of root-derived carbon

assimilated by rhizospheric bacteria under eCO2. This was

hypothesized to be related to reduction in the availability of

nutrients, including nitrogen, due to higher consumption by

the plant. Levels of nutrient limitation could explain the variabil-

ity in bacterial biomass response to eCO2, as do other variables

such as water limitation (Augustine et al. 2011). Indeed, micro-

bial biomass was found to increase under eCO2 following addi-

tion of mineral nutrients (Klironomos et al. 1996) or organic

matter (Dorodnikov et al. 2009). However, in other experiments,

viable rhizosphere bacterial count (Rillig et al. 1997) or number

of cultivable heterotrophic bacteria (Grayston et al. 1998a)

remained steady under eCO2, regardless of fertilization.

Community-level examination of composition and struc-

ture, using PLFA profiles and PCR-DGGE, has also produced

mixed results. Responses to eCO2 manifested by shifts in com-

position have been reported for different plant-soil systems

(Ringelberg et al. 1997; Jossi et al. 2006; Drigo et al. 2007; Kao-

Kniffin and Balser 2007; Kohler et al. 2010), but reports of

stability are equally common (Montealegre et al. 2002; Rønn

et al. 2002; Wasaki et al. 2005; Haase et al. 2008; Paterson et al.

2008). No response in archaeal community composition was

found in maize, but in soybean the relative abundance of

Crenarchaeota was reduced (Nelson et al. 2010). Using PLFA-

based stable isotope probing, a specific response of a group of

Gram-positive bacteria was detected within the metabolically

active subset of a mixed-grasses rhizosphere community

(Denef et al. 2007). In addition, Jossi et al. (2006) showed better

manifestation of the effect of eCO2 in active rhizosphere

populations compared to the total community, based on

a comparison of RNA- and DNA-based community profiles.
This suggests that the responsive population may not necessarily

be numerically dominant.

The effect of eCO2 may be more pronounced when specific

microbial groups are targeted. For instance, significant effects of

elevated eCO2 on Pseudomonas and Rhizobium populations were

reported (Marilley et al. 1999; Drigo et al. 2009; Schortemeyer

et al. 1996; Montealegre et al. 2000). This response varied

in trend among different plant hosts and among different

soils. In the rhizosphere of Larrea tridentate, the response to

changes in CO2 level was restricted to Firmicutes (Nguyen et al.

2011). In the rhizosphere of a wetland plant, Typha angustifolia,

relative abundance of acetate-consuming methanogenic

Archaea increased in response to eCO2 (Kao-Kniffin et al.

2011). Succession of root-inhabiting methanogenic Archaea in

rice was slowed down under eCO2 (Hashimoto-Yasuda et al.

2005). In contrast, where examined, the composition of nitrify-

ing or denitrifying rhizosphere bacteria remained stable under

eCO2 (Deiglmayr et al. 2004; Bowatte et al. 2007; Nelson et al.

2010; Pereira et al. 2011).

The effects of additional climatic drivers on soil and rhizo-

sphere microbial communities and their interactions have been

much less studied. For the Antarctic plant Deschampsia antarc-

tica, changes in UV-B irradiation level affected community-level

physiological profiles (CLPP) but not the number of cultivable

bacteria (Avery et al. 2003). Increased UV-B irradiation over

Eriophorum russeolum plants resulted in shifts in PLFA profiles

and CLPP, with no effect on total microbial biomass (Rinan et al.

2008). Ozone-stressed grasses showed remarkable similarity in

the composition of their associated rhizosphere bacterial com-

munities compared to respective controls (Dohrmann and

Tebbe 2005). In contrast, following long-term exposure to

ozone stress, composition of rhizosphere bacterial communities

of Fagus sylvatica trees was significantly altered (Schloter et al.

2005; Esperschütz et al. 2009).

The data accumulated so far describe only the response of

the community to relatively short-term changes. However, pre-

dictive hypotheses regarding adaptation of the rhizosphere pro-

karyotes and plants to climatic and atmospheric changes are, at

this stage, somewhat premature. This results, in part, from the

relative lack of long-term experimental data. In addition, all

experiments, regardless of their excellent design, suffer from

the bias of rather rapid changes in conditions. In reality, how-

ever, one would expect the shifts to be orders of magnitude

slower, possibly allowing evolution and coevolution of the plants

and associated microorganisms.
Genetic Traits Related to Rhizosphere
Competence

Rhizosphere competence is a term that describes the specific

ability of a microorganism to successfully colonize and survive

in the rhizosphere. Several studies in recent years have demon-

strated a number of bacterial functions, such as motility, attach-

ment, growth, type III secretion, transport, stress resistance, and

production of secondary metabolites, linked to rhizosphere
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competence (for review see Kiely et al. 2006 and Barret et al.

2011). For example, Matilla et al. (2007) conducted

a microarray-based experiment in which they studied Pseudo-

monas putida KT2440 (a known root-colonizing bacterium)

genes, expressed during the interaction of the cells with corn

(Zeamays) roots. They compared these to genes expressed under

three other conditions: planktonic cells growing exponentially in

rich medium, planktonic cells in stationary phase, and sessile

populations established in sand microcosms. The expression

level of a large number of genes was upregulated in the rhizo-

sphere, many of which were highly induced relative to the other

three control conditions (90 genes were upregulated at least

twofold in the rhizosphere versus all three controls and of

those, over 50 genes were induced more than sixfold!). One of

the most impressive findings of their study was that amid the

extensive rhizosphere-induced enhancement of gene expression,

not one significantly downregulated gene could be found. This

phenomenon might have been related to the mixed physiolog-

ical status of individual cells within the rhizosphere population.

The rhizosphere-activated genes included genes involved in

amino acid uptake and metabolism of aromatic compounds,

reflecting the availability of particular nutrients in this plant’s

root exudates. In addition, efflux pumps and enzymes for glu-

tathione metabolism were upregulated, suggesting that adapta-

tion to adverse conditions and stress (oxidative) response plays

an important role in rhizosphere competence in this system. The

finding of a GGDEF/EAL domain response regulator among the

induced genes suggests a role for the secondary messenger c-

diGMP in root colonization and survival of P. putida in this

rhizosphere system (Matilla et al. 2007).

When P. fluorescens WCS365 was applied to tomato

monoaxenic root system, several genes were identified as

involved in competitive root colonization (Lugtenberg et al.

2001; Lugtenberg and Kamilova 2009). Among the genes and

traits identified were those related to motility and chemotaxis

toward, and utilization of, root exudates. Amino acids and

dicarboxylic acids, but not sugars, were important root attrac-

tants in this P. fluorescens WCS365 and tomato system, while in

Arabidopsis, malate was a major attractant of Bacillus subtilis

FB17 (Rudrappa et al. 2008). Other competitive root-coloniza-

tion-related genes and traits were involved in adhesion, synthesis

of amino acids, uracil, and vitamin B1, lipopolysaccharide

structure, the ColR/ColS sensory system, the putrescine-uptake

system, site-specific recombinases, NADH:ubiquinone oxidore-

ductase, protein secretion, and the type III secretion system

(Lugtenberg et al. 2001; Lugtenberg and Kamilova 2009).

When Rhizobium leguminosarum was grown in the rhizo-

spheres of pea (its legume nodulation host), alfalfa (non-host

legume), and sugar beet (non-legume), several host-specific

traits were identified (Ramachandran et al. 2011). Many plasmid

(pRL8)-encoded genes were specifically induced in the pea nod-

ulation host. As expected, nod genes were induced only in the

rhizospheres of the two legumes. In the pea rhizosphere,

a specific transporter, possibly for monosaccharides, was also

found to be important. In addition, increased expression of

genes encoding enzymes of the glyoxylate cycle was found in
the pea rhizosphere. The study also identified bacterial responses

common to rhizospheres of all three host plants, such as organic

acid, C1-C2 and aromatic amino acid metabolism, hypoosmotic

regulation, detoxification andmultidrug resistance (MDR) fam-

ily efflux pump, genes involved in the response to stress (general

and oxidative), and many genes encoding proteins of unknown

function.

So far, studies with single strains, PGPR, or Rhizobium have

provided valuable information on gene expression of these

organisms and on symbiotic microbe-legume interactions

(Becker et al. 2004; Ruffel et al. 2008). However, despite advances

in metagenomic and metatranscriptomic techniques, due to the

extreme complexity of the system, the functions of the complex

natural rhizosphere community have not yet been described. As

nicely put by Schenk et al. (2012) in a recent review, ‘‘It is likely

that an unbiased multi-species approach such as metatran-

scriptomics will lead to the discovery of potentially interesting

(yet unknown) plant-microbe relationships.’’
Conclusions

The importance of rhizosphere communities to plant health and

development is clear.

This chapter attempted to illustrate and analyze the micro-

bial ecology in the rhizosphere, as revealed by enormous body of

literature, resulting from over a century of research. Neverthe-

less, our ability to draft a comprehensive and ubiquitous eco-

logical theory on the behavior of microorganisms in the

rhizosphere becomes impossible, due to the ambiguous and

partial picture still arising from the current knowledge. This is

in contrast to the currently established theories in macroecology,

and results from the enormous complexity of the system,

affected by multiple parameters such as plant species and its

physiological state and age, soil characteristics and environmen-

tal conditions, as well as the microbial diversity. We are therefore

limited in our current ability to draw general hypotheses regard-

ing the rhizosphere prokaryotes and this area is therefore

restricted to case-by-case studies.

Several future possibilities may be envisioned: One is that

additional research and technological advances in in situ studies

of microbial structure and function will lead to general under-

standing of the rhizosphere ecology. Alternatively, indeed due to

the diversity and complex nature of the system, and of different

rhizospheres, they are directed to individual unique paths. In

either case, it is imperative to move forward rhizosphere

research, taking advantage of the advanced molecular and imag-

ing tools developed in recent years.

Many questions still remain open: What makes an organ-

ism rhizosphere competent? What makes one population

dominant? Is there a cross-talk between the plant and the

bacteria in nonspecific interactions? Is it possible to detect

coevolution between plants and their rhizosphere community?

If so, could different mechanisms occur in different plant

species? How to make inoculation with beneficial microor-

ganism a success?
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Gschwendtner S, Esperschütz J, Buegger F, Reichmann M, Müller M, Munch JC,

Schloter M (2011) Effects of genetically modified starch metabolism in

potato plants on photosynthate fluxes into the rhizosphere and on microbial

degraders of root exudates. FEMS Microbiol Ecol 76:564–575

Guerrero-Molina MF, Einik BC, Pedraza RO (2011) More than rhizosphere

colonization of strawberry plants by Azospirillum brasilense. Appl Soil Ecol.

doi:10.1016/j.apsoil.2011.10.011

Gyamfi S, Pfeifer U, Stierschneider M, Sessitisch A (2002) Effects of transgenic

glufosinate-tolerant oilseed rape (Brassica napus) and the associated herbi-

cide application on eubacteiral and Pseudomonas communities in the rhizo-

sphere. FEMS Microbiol Ecol 14:181–190

Haase S, Philippot L, Neumann G,Marhan S, Kandeler E (2008) Local response of

bacterial densities and enzyme activities to elevated atmospheric CO2 and

different N supply in the rhizosphere of Phaseolus vulgaris L. Soil Biol

Biochem 40:1225–1234
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Högberg P, Read DJ (2006) Towards amore plant physiological perspective on soil

ecology. Trends Ecol Evol 21:548–554
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